Genetic tests, such as GeneSeeker, analyze genes, which are chemical instructions encoded in our DNA. The genes are the blueprints for building our bodies and maintaining the health of our cells, tissues and organs. Genetic testing looks for variations in your genes (mutations) that can cause genes to stop working properly, potentially lead to disease. There are various reasons why you or your healthcare provider might consider genetic testing, such as assessing the risk of you and your partner having a child affected by an inherited disorder, or to determine the cause of an inherited condition that runs in your family.
It has been estimated that everyone carriers 3‐5 genetic mutations but in most cases these do not cause a disease. This is because we each have two copies of every gene (with the exception of genes on the X-chromosome in men). The GeneSeeker test looks at variations in the DNA which are ‘recessive’, meaning that they only cause a disease when both copies of the gene have a mutation. If you have a recessive mutation in one copy of a gene, stopping it from working properly, the other (normal) copy is sufficient to prevent the disease. However, if your partner carries a mutation in the same gene, then there is a risk that a future child could receive a defective copy from each of you, leaving them with no functioning copies of the gene, and causing them to develop an inherited disorder.
Most carriers of recessive gene mutations have no family history of inherited disease. Such disorders can remain hidden in families for hundreds of years before suddenly and unexpectedly reappearing. We are all carriers of recessive mutations, but we do not realise it because we have two copies of each of our genes (with the exception of X-chromosome genes in males). Having one defective copy is not sufficient to cause disease. To have a recessive inherited disease both copies of the gene must be knocked out by mutation. GeneSeeker can look for hidden recessive mutations carried by you and your partner and identify whether you have any in the same gene. In such cases, there is a risk that you could each pass a defective copy of the gene to a future child, meaning that they would have no functional copy of the gene and would develop an inherited disorder.
Regardless of whether you are planning to get pregnant naturally or whether you intend to use assisted reproductive treatments (e.g. IVF), GeneSeeker can help to identify whether you and your partner have an increased risk of having a child affected by an inherited disorder. If you are both found to carry mutations in the same gene, there is a risk that a future child could inherit a defective copy of the gene from each of you, leading to the child being affected. If you find you are at increased risk of producing an affected child, there are strategies that can help avoid an affected pregnancy and/or birth, such as preimplantation genetic testing or prenatal testing.
We are all carriers of recessive genetic mutations and it is likely your baby will be too. However, being a carrier of a recessive mutation does not mean that the baby will be affected by an inherited disorder. We have two copies of each of our genes (with the exception of genes on the X-chromosome for men). If you have a recessive mutation in one copy of a gene, stopping it from working properly, the other (normal) copy is sufficient to prevent the disease.
GeneSeeker results are typically ready within 4 weeks of Juno Genetics receiving your blood sample.
In the vast majority of cases, the answer is no. We have two copies of each of our genes (with the exception of genes on the X-chromosome for men). The GeneSeeker test looks at variations in the DNA which are ‘recessive’, meaning that they only cause a disease when both copies of the gene have a mutation. If you have a recessive mutation in one copy of a gene, stopping it from working properly, the other (normal) copy is sufficient to prevent the disease. However, if your partner carries a mutation in the same gene, then there is a risk that a future child could receive a defective copy from each of you, leaving them with no functioning copies of the gene, and causing them to develop an inherited disorder.